Installation and Startup of Fleck 5600 and 2510 Backwashing Filters:

A Non-Technical Guide to Installing and Putting into Service the Pure Water Products Standard Backwashing Filters

Here are the steps involved in setting up and starting up your backwashing filter.

1. Check to make sure you have all the parts before you start.

2. Select your installation site and put the filter in place.

3. Load the media into the tank and screw on the control valve.

4. Connect the filter to your plumbing.

5. Run water into the filter and check for leaks.

6. Allow adequate time for the media to soak.

7. Backwash the filter, then run one or more full regeneration cycles.

8. Put the filter into service and start using the water.

Here’s an expansion of the steps presented above.

1. Parts List

You should receive:

tankandmediabix

You should have a mineral tank and one or more boxes of filter media.

1. A large tank called a “mineral tank.” Most of our filters use Vortech (Enpress) tanks. There will be a tube called a “riser” or “dip tube” permanently installed in the tank and visible through the hole in the top. The tank size will be stated on a decal on the side of the tank near the bottom. “1054” means the tank is 10″ in diameter and 54″ tall, for example. “0948” means the tank is 9″ in diameter and 48″ tall.  Note: If your tank leans to the side like the tank in the picture,  it’s because it is crooked in its base. This sometimes happens during shipping. To fix it, just pick tank up, while it’s light and empty, and tap the base against the floor until you get it straight. 

2. A box or multiple boxes of the filtration medium that goes in the tank. Be sure you have enough before you start. Media is commonly boxed in 1/2, 3/4, and 1 cubic foot sizes. Here are the common residential tank sizes and the media amount they hold:

0844 – 3/4 cubic foot.

0948 – 1 cubic foot.

1044 – 1.25 cubic feet.

1054 – 1.5 cubic feet.

1252 – 2.0 cubic feet.

1354 – 2.5 cubic feet.

Be sure you have enough, but if you got too much, don’t overload the tank.

Vortech mineral tanks require no gravel underbed, so the filter medium is all you will be putting into the tank. It should fill the tank about 2/3 full.

filterextras

Funnel, drain tubing, stainless steel bypass valve, and filter control valve.

3. A blue funnel to pour the media in with.

4. A stainless steel bypass valve, with either 3/4″ or 1″ ports.

5. Drain tubing. In most cases, 25′ of flexible 1/2″ drain tubing. (No drain tubing is included with larger 2510 filters that require more than 7 gallons-per-minute drain flow.)

6. The control valve. It will be one of these listed below. (Fleck does not put product names on its control valves, but you can identify your control valve from our main website.)

5600 Electro-mechanical Timer

5600 SXT (Electronic timer)

5600  AIO (Electronic Aeration Timer)

2510 Manual (non-electric)

2510 Electro-mechanical Timer

2510 SXT Electronic Timer

2510 AIO (Electronic Aeration Timer)

drainlabel

The control should have a tag near the drain port designating the flow control device installed in the filter. It will be one of these: 4, 5, 6, 7 gallons per minute. Fleck 2510 iron filters for larger tanks will have a metal drain line cartridge with the gallons per minute (gpm) rating stamped on the side.

 

2. Select a Place for Installation

The filter should be installed in a place where it will treat all the water going into the home. Usually, irrigation lines will be excluded. Most filters need access to a drain and a 110 volt electrical source. Drain water from a filter, unlike a water softener, is just water. So, if it is feasible, drain water can be directed to water plants. Keep in mind that the filter will at some time require maintenance and probably a media change, so put it in a place that gives you access. If installing outdoors, the filter will need protection from freezing, direct sunlight, and rain. Unless earthquakes are an issue, there is no need to secure the filter with straps, but it needs a good, solid, level surface to stand on.  

3. Load the media into the tank and screw on the control valve.

tapeonriser2

Put tape or a small plastic bag over the open end of the tank’s riser tube to prevent media from going into the tube.  Don’t forget to remove the tape after the media is loaded. And clean any media dust out of the tank threads before screwing on the control head.

Using the funnel provided, pour all of the filter media into the tank. No gravel underbed is needed. Before you start, cover the top of the riser tube centered in the tank with duct tape or with a small plastic bag so that media cannot get into the tube. Media that goes into the tube will end up in your house lines. Filter media, especially carbon, are dusty, so it’s a good idea to wear a face mask while pouring media into the tank. The media will not fill the tank completely. In most cases, the tank will be about 2/3 full. When the granular filter medium has been loaded, clean the tank threads of media dust and screw the valve onto the tank. (The riser goes into the center hole of the bottom of the control valve.) Hand tighten until snug. No tool needed.

4. Connect the filter to your plumbing.



bypassclampThe bypass valve connects to the control valve body with clamps. A small amount of wiggle is normal after clamps are tightened.

bypass2510

Fleck 2510 Control with Bypass installed.  Note that the bypass valve is in bypass position.  When in bypass mode, the valve sends water around the filter to the home. The “Service” setting sends water through the filter and to the home. 

The stainless bypass connects to the o-ringed adapters and is secured by two clamps. Slide the bypass into place and tighten the clamps snugly. It is normal for there to be some “play” in the finished assembly.

The bypass ends in 3/4″ or 1″ female pipe thread. Connect to your plumbing using standard plumbing Teflon tape or liquid Teflon. (Teflon tape is what most installers use.)

Note that water enters the filter from the left (looking at it from the pipe installation side). Follow the directional arrows on the bypass.

Connect to a drain following your local plumbing code. The filter comes with flexible tubing that slips onto the barbed fitting on the control. (Adding a hose clamp is recommended.) If you prefer to hard-pipe the drain, remove the barbed fitting and connect to the female thread.

We highly recommend installing a shutoff valve in the pipe coming into the filter.

5. Run water into the filter and check for leaks.

Put the bypass valve in back of the filter into Service position.

Plug in the control valve.

Before sending water into the filter, it’s best to put the control valve into Backwash mode. This will allow water to flow upward through the filter and out the drain line, protecting the home’s service lines from debris coming from the unwashed media.

Here’s how to put the control valve into backwash position:

For mechanical timer valves (no digital display), turn the large center knob on the timer face clockwise. With the 2510, click the center knob one click and you will hear the motor engage. Allow a minute for the piston to move into place and the unit will be in backwash position. With the 5600, advance the knob slowly clockwise a few clicks until you see the beginning of a word in the viewing slot. Wait one minute, then unplug the valve.

For SXT electronic control valves, push the button on the left side of the face and hold for five seconds or until you hear the motor engage. Wait for the motor to move the valve to backwash mode. When “BW” shows on the display and the time (e.g. 10:00) begins counting down backward.

When the valve is in backwash position, unplug the valve.

The unplugged valve will remain in backwash position.

Open the water inlet valve halfway and allow water to slowly fill the tank. Take your time.

When the tank is full and water is running smoothly (but slowly) from the drain line, turn off the water and allow the media to soak.

6. Allow adequate time for the media to soak.

During the media soak, placing the bypass valve into Bypass position will send unfiltered water into the home.

There are no hard rules about how long the media should soak. Half an hour is enough for most media. Some manufacturers ask for a longer soak:

Zeolite –24 hours.

Carbon – 24 hours.

Katalox Light – Overnight soak and extended backwash.

In addition to media loss, the consequences of inadequate soaking can be excess air in service lines (especially with carbon), small particulate in service lines, cloudy water for a time, and sometimes a metallic taste. Initial service water with Katalox Light is unpredictable: sometimes it puts out a fine film that lasts for days, sometimes a metallic taste, and it almost always produces high pH and high alkalinity. These issues eventually go away. 

7. Backwash the filter, then run a full regeneration cycle.

After the media has had a good soak, return the bypass valve to service position, open the inlet valve all the way and plug the control valve in. The backwash will resume, now at full speed. Let the control valve finish the entire cycle (backwash and rinse).  Note that mechanical timers take much longer to return to service than SXT units.  With mechanical valves, after the rinse has finished, it’s permissible to advance the valve manually to service position. 

Finally, open the downstream faucet nearest the filter and let water rinse from the faucet at least ten minutes. The water should run completely clear.

If you feel that more backwash and rinse are needed, simply repeat the regeneration cycle.

Can Earth’s Fresh Water Survive the Phosphorus Overload?

Man-made phosphorus pollution is reaching dangerously high levels in freshwater basins around the world, according to new research.

Phosphorus is a common component of mineral and manure fertilizers because it boosts crop yields. However, a large portion of phosphorus applied as fertilizer is not taken up by plants, and either builds up in the soil or washes into rivers, lakes and coastal seas, according to the study’s authors.

The results of a new study show global human activity emitted 1.62 million U.S. tons of phosphorus per year into the world’s major freshwater basins, four times greater than the weight of the Empire State Building.

The study also assessed whether human activity had surpassed the Earth’s ability to dilute and assimilate excess levels of phosphorus in fresh water bodies. The authors found phosphorus load exceeded the assimilation capacity of freshwater bodies in 38 percent of Earth’s land surface, an area housing 90 percent of the global human population. There is simply not enough fresh water in many areas to assimilate the phosphorus.

The study’s results indicate freshwater bodies in areas with high water pollution levels are likely to suffer from eutrophication, or an excess level of nutrients, due to high phosphorus levels. Eutrophication due to phosphorus pollution causes algal blooms, which can lead to the mortality of fish and plants due to lack of oxygen and light. It also reduces the use of the water for human purposes such as consumption and swimming.

Breaking down phosphorus load
The authors of the new study examined agricultural activity to calculate the total amount of man-made phosphorus entering Earth’s surface water from 2002 to 2010. They gathered data on how much fertilizer is applied per crop in each country, and estimated domestic and industrial phosphorus production by looking at protein consumption per capita per country.

 

The largest contribution to the global Phosphorus load came from domestic sewage at 54 percent, followed by agriculture at 38 percent and industry at 8 percent.

The authors found the phosphorus load from agriculture grew by 27 percent over the study period, from 525 gigagrams (579,000 U.S. tons) in 2002 to 666 gigagrams (734,000 U.S. tons) in 2010.

About The American Geophysical Union
The American Geophysical Union is dedicated to advancing the Earth and space sciences for the benefit of humanity through its scholarly publications, conferences, and outreach programs. AGU is a not-for-profit, professional, scientific organization representing 60,000 members in 137 countries.

SOURCE: The American Geophysical Union.  Via Water Online.

 

 

 

How Much Do Permeate Pumps Contribute to TDS Creep in Home RO Units?

by Gene Franks

The permeate pump has become a popular option for undersink reverse osmosis units. The “pump” doesn’t increase inlet pressure, as an electric booster pump does, but enhances RO performance by isolating the RO membrane from back pressure from the storage tank. It uses energy taken from the brine (drain) flow to power the product water (permeate) into the pressurized storage tank. The permeate pump saves water, no doubt about it, and is assumed to improve water quality, as measured by TDS performance, as well.

One of the controversial issues with the permeate pump is whether it should be installed with or without a standard auto shutoff valve (ASO), the device that turns standard RO production off when the unit’s storage tank is full.

permeatepumpmodelMysterious action of the non-electric permeate pump. Click on picture for animated version.

If installed without a shutoff valve, the pump itself shuts down production when the tank is full. With this arrangement, the tank is filled to almost 100% of the pressure of the tap water. The high tank pressure is especially advantageous in low pressure situations, such as wells set up to send pressures as low as 30 or 40 psi to the home.

If the permeate pump is installed with the regular shutoff valve, the valve shuts down production when the storage tank pressure reaches about 2/3 of the tap water pressure. I

The reason most permeate pumps are now installed with the ASO in place, in spite of giving up a little pressure at the faucet,  is to combat a phenomenon called “TDS creep” that occurs when the RO unit sits unused. Without the ASO to form a physical wall between incoming tap water and the RO membrane, the dissolved solids count “creeps” upward because the natural forces of osmosis are still at work.

TDS stands for “total dissolved solids” and the TDS count is a theoretical sum of all the minerals dissolved in the water.  Testing TDS is a standard way to evaluate reverse osmosis performance. The lower the TDS reading, the better the unit is working.

I decided to give the TDS creep problem a real world test with my home RO unit running with three different configurations to see if much dreaded TDS creep really matters significantly in home units. The chart below shows the three formats and the results.

I took 16 tests in each of three categories, all in the morning, testing the first water out of the unit after a night of inactivity. TDS creep occurs when the unit is not producing water. In all, the testing spread over 12 consecutive days. I tested the first glass, the second glass, the third glass, and then emptied the tank half way and took a test there. As expected, the first and second glasses usually but not always had the highest TDS readings no matter what format the RO unit was arranged in.

Testing wasn’t done with high dollar lab equipment but with my trusty HM TDS-3 handheld tester, the same tester we send out with our Black and White RO units.

A tap water TDS reading was taken before each group to provide a “base line” and results below are expressed as “% rejection” rather than actual TDS numbers. [“Percent rejection” means tap water TDS minus RO TDS divided by tap water TDS. It expresses the percentage of the total dissolved solids (minerals) in the water that are being rejected by the membrane. The higher the percentage, the better the membrane is working.]

The column on the right is the significant figure. It shows the average of all 16 tests taken in the category.

Product Setup

Lowest Reading–% rejection

Highest Reading–% rejection

Average — % rejection

Permeate Pump with Auto Shutoff Installed

89% 96% 93.50%

Permeate Pump with Auto Shutoff Absent

89% 97% 91%

Standard Setup: Auto shutoff, no permeate pump.

92% 97% 95.25%

As expected, the “first water out in the morning” TDS performance of the unit with permeate pump was better with the shutoff valve than without.  It was totally unexpected, however, that the best performance of all was the standard setup unit with the conventional shutoff system and no permeate pump. I have no explanation for this, but I should mention a couple of variables.  One is that the membrane used is the GRO 50/50, a stingy water-saver that puts out a much reduced brine flow to drive the pump. The pump seems to run fine with the GRO, but starvation of brine water to power the pump might matter. Also, the pump itself is an older version ERP 1000, and the newer, quieter ERP 500 might be a better match for the membrane.

The final word, though, is that although the TDS performance of the permeate pump unit with the shutoff valve seems a bit better, for residential units with lots of stop and go use, I doubt that the difference is worth worrying about. This tiny trial certainly doesn’t give a definitive answer, but I suspect the result from my home unit is typical of what happens in most home installations.

Radium in Texas Water


Posted February 5th, 2018

Radiation in Water Reported by the Environmental Working Group

The nonprofit Environmental Working Group (EWG) evaluated data from a five-year study that ended in 2015 and found radium in water in all 50 US states.

The state with the most widespread contamination, according to EWG, is Texas, where more than 3,500 utilities serving more than 22 million people — about 80 percent of the state’s population– reported finding radium.

“Radium and radon are potent human carcinogens. Radium, via oral exposure, is known to cause lung, bone, head (mastoid air cells), and nasal passage tumors. Radon, via inhalation exposure, causes lung cancer,”  according to an EPA fact sheet.

Radium is a contaminant with a relatively high EPA limit.  California’s limit is much lower, and a large number of US water systems which pass US standards would exceed California’s.   According the EWG: “Almost all exceeded California state scientists’ public health goals for two separate radium isotopes, set in 2006, which are hundreds of times more stringent than the EPA’s standard for the two isotopes combined. The elevated risk of cancer, as well as potential harm to fetal growth and brain development, decreases with lower doses of radiation but does not go away.”

Main Source:  Water Online